Restoring a Severely Disturbed Watershed via Ecological Engineering: The Role of Passive Treatment Technologies

R.W. Nairn, J.A. LaBar, L.R. Oxenford, B.J. Page, N.L. Shepherd, J. Arango and R.C. Knox Center for Restoration of Ecosystems and Watersheds School of Civil Engineering and Environmental Science The University of Oklahoma, Norman, OK

School of Civil Engineering & Environmental Science College of Engineering

Red Water at Tar Creek

"Water boiled out of a red wound in the pasture and spilled across the grass...

...George Mayer knew in an instant what it was.

The damn mines," he said to himself.

The mines are full, and the water's finally coming out."

Los Angeles Times February 6, 1983

Watershed Challenges

Passive Treatment Performance

Ecological Engineering

Watershed Challenges

Tri-State Lead-Zinc Mining District

Mississippian sulfides - Galena (PbS) - Sphalerite (ZnS) Cherty limestone host rock Underground works - Multiple levels - High ceilings Surface processing $-\sim 5\%$ recovery

FIGURE 1. - Principal Part of Tri-State Zinc-Lead District, Showing Mined Areas.

Tar Creek (OK)

- National Priorities List (1983)
- Elevated Fe, Zn, Cd, Pb in water, chat, soils and biota
- 95x10⁶ m³ mine pool
 Artesian discharges
 Leachate and runoff

Oklahoma... ...Where the wind comes sweeping down the plain...

Artesian mine

water discharges

Collapse features

Jinfrastructure Impeded drainage

Waste ("chat") piles Wet fines impoundments

Communities ...

Dry fines Impoundments

Leachate

Tar Creek Surface and Ground Water Decision

Initial artesian discharges (1979)
 USEPA concluded that (1984):

"impacts to (surface waters) are due to irreversible man-made

damages resulting from past mining operations at the site"

Fund-balancing waiver used
 Costs prohibitively high to address surface water contamination

Meeting the Challenge

Comprehensive watershed monitoring

 Significant artesian discharges

- Net alkaline
- Fe, Zn, Pb, Cd, As

Focus on *point of discharge* treatment

Ecology + Engineering

 Relationships between organisms and environment
 Descriptive science

- Application of science to meet societal needs
 Prescriptive solutions
- Prescriptive solutions

Ecological Engineering

The design of sustainable ecosystems that integrate human society with its natural environment for the benefit of both

(Mitsch and Jorgenson 2004)

Mine Water Passive Treatment

- Naturally-occurring biogeochemical, microbiological and ecological processes
- Driven by renewable energies
- Natural unprocessed materials
- Lower O&M costs but larger land areas
 30+ years experience

Mayer Ranch Study Site

Artesian discharges
 from abandoned
 boreholes

■ 150 **-** 250 gpm

Represent ~ 10-20% contaminant mass load in watershed

Mayer Ranch Water Quality

- pH 5.95 ± 0.06
- Alk. (net) 393
- Fe
- Zn
- Ni
- Cd
- Cu
- Pb
- **^** ~
- As
- SO₄-2

393 ±18 (29) mg/L 192 ± 3 mg/L

- 11 ± 0.07 mg/L
- 0.97 ± 0.02 mg/L
- 17 ± 4 μg/L
- 60 ± 13 μg/L
 - 64 ± 2 μg/L
 - 2239 ± 26 mg/L

Mayer Ranch – 1995

MR-W

Conceptual Design

- Based on decade of research
- Targeted contaminant removal
 - Oxidation reactions
 - Reduction reactions
 - Sorption
 - Precipitation

Sequential process units

Engineering Design

System start up 11/08 Aerial photo 02/09

14

Mayer Ranch Passive Treatment System Tar Creek Superfund Site Commerce, OK

2N

3N

4N

2S

3S

4S

5S

6

Mayer Ranch Passive Treatment System Tar Creek Superfund Site Commerce, OK

Passive Treatment Performance

Mean Water Quality Changes

	In	Out
рН	5.95	7.02
Tot. Alk. (mg/L)	393	224
Net Alk. (mg/L)	29	224
Fe (mg/L)	192	0.13
Zn (mg/L)	11	0.25
Ni (mg/L)	0.97	0.15
Cd (µg/L)	17	<dl< td=""></dl<>
Pb (µg/L)	60	<dl< td=""></dl<>
As (µg/L)	64	<dl< td=""></dl<>
SO_{4}^{-2} (mg/L)	2239	2057

Receiving stream downstream of system effluent

Receiving Stream Ecological Recovery

2005

2012

- Marked improvement in water quality (metals loads decreased)
- Early indications of return 2009 of fish community

Receiving Stream

Selected Unnamed Tributary fish data (W.J. Matthews, OU Biology)

		Catch per unit e	effort (CPUE)
Scientific name	Common name	2005-07	2009-12
Gambusia affinis	Western mosquitofish	39.24	187.60
Lepomis cyanellus	Green sunfish	0.81	16.80
Lepomis macrochirus	Bluegill	1.00	3.00
Lepomis megalotis	Longear sunfish	0.02	6.80
Notemigonus crysoleucas	Golden shiner	0.17	0.60
Lepomis gulosus	Warmouth	0.07	0.20
Etheostoma gracile	Slough darter	0	0.80
Ameiurus melas	Black bullhead	0	0.40
Fundulus notatus	Blackstriped topminnov	w O	0.40
Micropterus salmoides	Largemouth bass	0	0.20
	Species richness	6	10

On-Site Mass Retention

	Mass retained (kg/year)
Fe	57000
Zn	3300
Ni	300
Cd	5
Pb	17
As	18

Grand Lake O' the Cherokees Sediments Premier recreational reservoir Surficial sediments show elevated metals

What comes next?

Unnamed Tributary Watershed

Southeast Commerce Project

Kat Creet

The second

MRPTS

PL DURG

 Chemical and biological recovery in UT

 Secondary source of impairment limiting effectiveness SE Commerce

"Red Hole" and "Green Hole" collapses

Surface
 reclaimed ~
 2006

 Water currently discharges into conduit under US66

SE Commerce
 Flow: 100 gpm
 - Fe: 140 mg/L
 - Zn: 11 mg/L
 - Pb: 62 µg/L
 - Cd: 37 µg/L

SE Commerce Conceptual Design

Beaver Creek

 Culturally significant to the Quapaw Tribe
 Multiple discharges
 Interconnected and variable flows

	BC MD8
рН	6.62
Fe (mg/L)	9.28
Zn (mg/L)	1.60
Pb (µg/L)	15
Cd (μ g/L)	1

Chat Pile Leachate and Runoff

Substantial metal sourceSeasonal and episodic loads

Cope et al. 2008 (USGS SIR 2007-5115)

	Leachate load	Mine outflow
	(kg/day)	load (kg/day)
Fe	0.207	70.31
Zn	11.88	18.05
Pb	0.006	0.006
Cd	0.047	0.019

Conclusions

Conclusions

- Passive treatment represents effective mechanism for mine water quality improvement
- Technology transferable to other mine water discharges
- Reconsideration of previous administrative decisions warranted

Reversing the Irreversible?

As of 2010, EPA noted that passive treatment

"...could be an economically feasible engineered remedy for surface water at the site. For these reasons, in this fourth five-year review, the fund balancing ... waiver ... may no longer be appropriate and should be reevaluated."

What will be said in 2015?

Acknowledgements

- George and Maxine Mayer and family
- Red Pritchard and family
- OU students, faculty and staff especially CREW, CEES, Zoology and OCS
- Quapaw Tribe of Oklahoma
- City of Commerce
- Northeastern Oklahoma A&M College
- ODEQ Land Protection Division
- CH2M-Hill team and subcontractors
- Grand River Dam Authority
- USEPA Water Division Agreement X7-97682001-0
- USGS Toxic Substances Hydrology Program Agreement DOI-USG 04HQAG0131
- ODEQ Agreement PO2929019163

The CREW

K.A. Strevett, R.C. Knox, W.J. Matthews, E. Bergey, J. Basara, J.A. LaBar, C.H. Kellogg, A.D. O'Sullivan, S.A. Yepez, A.D. Smith, J.M. McAllister, W.J. Andrews, A.J. Brewer, B.E. Santamaria, C.A. Neely, A.E. Garrido, W.J. Strosnider, D.L. Lutes, M.M. Roberts, D.M. Hensley, R.L. White, C.F. Gause, T.L. Traw, J. Coffey, C.M. Porter, D. Athay, B. Winter, N.J. Iverson, V.B. Arvidson, R.A. Garrett, C.R. DuBois, E.E. Breetzke, M.N Mercer, J. Arango Calderon, N. Berg-Mattson, J.D. Brumley, B.R. Furneaux, M.J. Rice, R.C. Dutnell, L.R. Oxenford, A. Strevett, Z. Sansom, L. Mignogna, W. Runyon, K. Ryan, P. Eger, J. Clifton, A. Donaldson, H. Bragg, A. Danielson, A Oberst, D. Tepo, K. Swanson, D. Miller, E. Spargo, K. Wahnee, E. J Fowler, S. Guzman, N. Shepherd, V. Nadiq, A Marsh, S Zawrotny, T. Bisanar, B, Winfrey, I. Gray, M. Cogburn, K. Walker, D. Morris D. Ertegrul, P. Baczynski, B. Johnson, A. Sutter, K Kauk, C. Turley, E. Shaw, et al.

Questions?

http://CREW.ou.edu

nairn@ou.edu